NAG C Library Function Document

nag bessel j alpha (s18ekc)

1 Purpose

nag_bessel_j_alpha (s18ekc) returns a sequence of values for the Bessel functions $J_{\alpha+n-1}(x)$ or $J_{\alpha-n+1}(x)$ for real x, non-negative $\alpha < 1$ and n = 1, 2, ..., |N| + 1.

2 Specification

3 Description

This routine evaluates a sequence of values for the Bessel function of the first kind $J_{\alpha}(x)$, where x is real and non-zero and α is the order with $0 \le \alpha < 1$. The (|N|+1)-member sequence is generated for orders $\alpha, \alpha+1, \ldots, \alpha+N$ when $N \ge 0$. Note that + is replaced by - when N < 0. For positive orders the routine may also be called with x = 0, since $J_q(0) = 0$ when q > 0. For negative orders the formula

$$J_{-q}(x) = \cos(\pi q)J_q(x) - \sin(\pi q)Y_q(x)$$

is used to generate the required sequence.

4 Parameters

1: \mathbf{x} – double Input

On entry: the argument x of the function.

Constraint: $\mathbf{x} \neq 0.0$ when $\mathbf{nl} < 0$.

2: \mathbf{a} - double Input

On entry: the order α of the first member in the required sequence of function values.

Constraint: $0.0 \le \mathbf{a} < 1.0$.

3: \mathbf{nl} - Integer Input

On entry: the value of N.

Constraint: $abs(\mathbf{nl}) \leq 101$.

4: $\mathbf{b}[dim 1]$ - Complex Output

Note: the dimension, dim1, of the array **b** must be at least $abs(\mathbf{nl})+1$.

On exit: with fail.code = NE_NOERROR or fail.code = NW_SOME_PRECISION_LOSS, the required sequence of function values: $\mathbf{b}(n)$ contains $J_{\alpha+n-1}(x)$ if $\mathbf{nl} \geq 0$ and $J_{\alpha-n+1}(x)$ otherwise, for $n=1,2,\ldots$, $abs(\mathbf{nl})+1$.

5: **fail** – NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

[NP3491/6] s18ekc.1

5 Error Indicators and Warnings

NE REAL INT

```
On entry, \mathbf{x} = \langle value \rangle, \mathbf{nl} = \langle value \rangle.
Constraint: \mathbf{x} \neq 0.0 when \mathbf{nl} < 0.
```

NE REAL

```
On entry, \mathbf{a} = \langle value \rangle.
Constraint: 0.0 < \mathbf{a} < 1.0.
```

NE INT

```
On entry, \mathbf{nl} = \langle value \rangle.
Constraint: abs(\mathbf{nl}) \leq 101.
```

NE_OVERFLOW_LIKELY

The evaluation has been abandoned due to the likelihood of overflow.

NW_SOME_PRECISION_LOSS

The evaluation has been completed but some precision has been lost.

NE_TOTAL_PRECISION_LOSS

The evaluation has been abandoned due to total loss of precision.

NE_TERMINATION_FAILURE

The evaluation has been abandoned due to failure to satisfy the termination condition.

NE INTERNAL ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

6 Further Comments

6.1 Accuracy

All constants in the underlying functions are are specified to approximately 18 digits of precision. If t denotes the number of digits of precision in the floating-point arithmetic being used, then clearly the maximum number of correct digits in the results obtained is limited by $p = \min(t, 18)$. Because of errors in argument reduction when computing elementary functions inside the underlying functions are, the actual number of correct digits is limited, in general, by p - s, where $s \approx \max(1, |\log_{10}|x||, |\log_{10}|\alpha||)$ represents the number of digits lost due to the argument reduction. Thus the larger the values of |x| and $|\alpha|$, the less the precision in the result.

6.2 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions Dover Publications (3rd Edition)

7 See Also

None.

8 Example

The example program evaluates $J_0(x)$, $J_1(x)$, $J_2(x)$ and $J_3(x)$ at x = 0.5, and prints the results.

s18ekc.2 [NP3491/6]

8.1 Program Text

```
/* nag_bessel_j_alpha (s18ekc) Example Program.
 * Copyright 2000 Numerical Algorithms Group.
 * NAG C Library
 * Mark 6, 2000.
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nags.h>
static double c_1 = 1.;
int main(void)
{
  Complex b[101];
  double a;
  double alpha;
  double d__1;
  double x;
  Integer i;
  Integer exit_status=0;
  Integer nl;
  NagError fail;
  INIT_FAIL(fail);
  Vprintf("s18ekc Example Program Results\n\n");
  /* Skip heading in data file */
  Vscanf("%*[^\n]");
  while (scanf("%lf %lf %ld%*[^\n]", &x, &a, &nl) != EOF)
      Vprintf("\n x
                       a nl\n\n';
      \label{lem:printf("%4.1f %4.1f %6ld\n', x, a, nl);} Vprintf("%4.1f %4.1f %6ld\n', x, a, nl);
      s18ekc (x, a, nl, b, &fail);
      if (fail.code == NE_NOERROR)
          \label{lem:printf("\n Requested values of J_alpha(X)\n'n");} \\
           alpha = a;
          Vprintf("
                         alpha
                                              J_alpha(X)\n");
          for (i = 1; i \le ABS(n1) + 1; ++i)
       \label{lem:printf} $$\operatorname{Vprintf}(" \ \%12.4e, \ \%12.4e) \in [i - 1].re, \ b[i - 1].im);
       d_1 = (double) nl;
       alpha += SIGN (c_1, d_1);
     }
        }
      else
          Vprintf("Error from s18ekc.\n%s\n", fail.message);
          exit_status = 1;
          goto END;
        }
```

[NP3491/6] s18ekc.3

```
}
END:
  return exit_status;
}
```

8.2 Program Data

```
s18ekc Example Program Data
0.5  0.0  3 : Values of x, a and nl
```

8.3 Program Results

```
s18ekc Example Program Results
```

```
x a nl
```

Requested values of J_alpha(X)

```
alpha J_alpha(X)

0.0000e+00 ( 9.3847e-01, 0.0000e+00)

1.0000e+00 ( 2.4227e-01, 0.0000e+00)

2.0000e+00 ( 3.0604e-02, 0.0000e+00)

3.0000e+00 ( 2.5637e-03, 0.0000e+00)
```

s18ekc.4 (last) [NP3491/6]